login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156811 Triangle T(n, k) = 0 if BernoulliB(n-k) = 0 otherwise round( binomial(n, k)/BernoulliB(n-k)^k ), read by rows. 1
1, 1, 1, 1, -4, 1, 0, 18, 12, 1, 1, 0, 216, -32, 1, 0, -150, 0, 2160, 80, 1, 1, 0, 13500, 0, 19440, -192, 1, 0, 294, 0, -945000, 0, 163296, 448, 1, 1, 0, 49392, 0, 56700000, 0, 1306368, -1024, 1, 0, -270, 0, 6223392, 0, -3061800000, 0, 10077696, 2304, 1, 1, 0, 40500, 0, 653456160, 0, 153090000000, 0, 75582720, -5120, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
T(n, k) = 0 if BernoulliB(n-k) = 0 otherwise round( binomial(n, k)/BernoulliB(n-k)^k ).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -4, 1;
0, 18, 12, 1;
1, 0, 216, -32, 1;
0, -150, 0, 2160, 80, 1;
1, 0, 13500, 0, 19440, -192, 1;
0, 294, 0, -945000, 0, 163296, 448, 1;
1, 0, 49392, 0, 56700000, 0, 1306368, -1024, 1;
0, -270, 0, 6223392, 0, -3061800000, 0, 10077696, 2304, 1;
MATHEMATICA
T[n_, k_]:= If[BernoulliB[n-k]==0, 0, Round[Binomial[n, k]*BernoulliB[n-k]^(-k)]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
A156811:= func< n, k | Bernoulli(n-k) eq 0 select 0 else Round( Binomial(n, k)/Bernoulli(n-k)^k ) >;
[A156811(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
(Sage)
def A156811(n, k): return 0 if (bernoulli(n-k)==0) else round( binomial(n, k)/bernoulli(n-k)^k )
flatten([[A156811(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
CROSSREFS
Sequence in context: A345393 A081114 A069018 * A246609 A371080 A130636
KEYWORD
sign,tabl,less
AUTHOR
Roger L. Bagula, Feb 16 2009
EXTENSIONS
Definition corrected and edited by G. C. Greubel, Jun 10 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 15:50 EDT 2024. Contains 371844 sequences. (Running on oeis4.)