OFFSET
0,5
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1325
FORMULA
T(n, k) = 0 if BernoulliB(n-k) = 0 otherwise round( binomial(n, k)/BernoulliB(n-k)^k ).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -4, 1;
0, 18, 12, 1;
1, 0, 216, -32, 1;
0, -150, 0, 2160, 80, 1;
1, 0, 13500, 0, 19440, -192, 1;
0, 294, 0, -945000, 0, 163296, 448, 1;
1, 0, 49392, 0, 56700000, 0, 1306368, -1024, 1;
0, -270, 0, 6223392, 0, -3061800000, 0, 10077696, 2304, 1;
MATHEMATICA
T[n_, k_]:= If[BernoulliB[n-k]==0, 0, Round[Binomial[n, k]*BernoulliB[n-k]^(-k)]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
A156811:= func< n, k | Bernoulli(n-k) eq 0 select 0 else Round( Binomial(n, k)/Bernoulli(n-k)^k ) >;
[A156811(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
(Sage)
def A156811(n, k): return 0 if (bernoulli(n-k)==0) else round( binomial(n, k)/bernoulli(n-k)^k )
flatten([[A156811(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 16 2009
EXTENSIONS
Definition corrected and edited by G. C. Greubel, Jun 10 2021
STATUS
approved