login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069018 Smallest square k > 0 such that n*k + 1 is also a square or 0 if no such term exists, i.e., when n is a square. 2
0, 4, 1, 0, 16, 4, 9, 1, 0, 36, 9, 4, 32400, 16, 1, 0, 64, 16, 1521, 4, 144, 1764, 25, 1, 0, 100, 25, 576, 3312400, 4, 74529, 9, 16, 36, 1, 0, 144, 36, 16, 9, 102400, 4, 281961, 900, 576, 12873744, 49, 1, 0, 196, 49, 8100, 82810000, 4356, 144, 4, 400, 6625476 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Terms from Robert G. Wilson v.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

f:= proc(n) local x, y, t, z, k, r;

  if issqr(n) then return 0 fi;

  t:= [isolve(n*x^2+1=y^2)];

  z:= (indets(t, name) minus {x, y})[1];

  for k from 0 do

    r:= select(`>`, map(s -> eval(x, s), eval(t, z=k)), 0);

    if nops(r) >= 1 then return min(r)^2 fi

  od

end proc:

map(f, [$1..100]); # Robert Israel, Jun 29 2018

MATHEMATICA

Do[k = 0; If[ !IntegerQ[ Sqrt[n]], k = 1; While[ !IntegerQ[ Sqrt[n*k^2 + 1]], k++ ]]; Print[k^2], {n, 1, 35}] (* Robert G. Wilson v *)

CROSSREFS

Sequence in context: A244125 A007789 A081114 * A156811 A246609 A130636

Adjacent sequences:  A069015 A069016 A069017 * A069019 A069020 A069021

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Apr 02 2002

EXTENSIONS

Offset corrected by Robert Israel, Jun 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 05:16 EST 2018. Contains 318082 sequences. (Running on oeis4.)