%I #10 Sep 08 2022 08:45:41
%S 1,1,1,1,-4,1,0,18,12,1,1,0,216,-32,1,0,-150,0,2160,80,1,1,0,13500,0,
%T 19440,-192,1,0,294,0,-945000,0,163296,448,1,1,0,49392,0,56700000,0,
%U 1306368,-1024,1,0,-270,0,6223392,0,-3061800000,0,10077696,2304,1,1,0,40500,0,653456160,0,153090000000,0,75582720,-5120,1
%N Triangle T(n, k) = 0 if BernoulliB(n-k) = 0 otherwise round( binomial(n, k)/BernoulliB(n-k)^k ), read by rows.
%H G. C. Greubel, <a href="/A156811/b156811.txt">Table of n, a(n) for n = 0..1325</a>
%F T(n, k) = 0 if BernoulliB(n-k) = 0 otherwise round( binomial(n, k)/BernoulliB(n-k)^k ).
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, -4, 1;
%e 0, 18, 12, 1;
%e 1, 0, 216, -32, 1;
%e 0, -150, 0, 2160, 80, 1;
%e 1, 0, 13500, 0, 19440, -192, 1;
%e 0, 294, 0, -945000, 0, 163296, 448, 1;
%e 1, 0, 49392, 0, 56700000, 0, 1306368, -1024, 1;
%e 0, -270, 0, 6223392, 0, -3061800000, 0, 10077696, 2304, 1;
%t T[n_, k_]:= If[BernoulliB[n-k]==0, 0, Round[Binomial[n, k]*BernoulliB[n-k]^(-k)]];
%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
%o (Magma)
%o A156811:= func< n,k | Bernoulli(n-k) eq 0 select 0 else Round( Binomial(n,k)/Bernoulli(n-k)^k ) >;
%o [A156811(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 10 2021
%o (Sage)
%o def A156811(n,k): return 0 if (bernoulli(n-k)==0) else round( binomial(n,k)/bernoulli(n-k)^k )
%o flatten([[A156811(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 10 2021
%K sign,tabl,less
%O 0,5
%A _Roger L. Bagula_, Feb 16 2009
%E Definition corrected and edited by _G. C. Greubel_, Jun 10 2021