login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156214
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*(x*A(x))^n/n ), a power series in x with integer coefficients.
2
1, 2, 14, 256, 18734, 6932928, 11550075900, 80606017093632, 2307293302418365718, 268696321569450570148864, 126770971088210751226430473604, 241680859880056839468193961216049152
OFFSET
0,2
COMMENTS
Compare to g.f. for Catalan sequence: C(x) = exp( Sum_{n>=1} (x*C(x))^n/n ).
FORMULA
G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x*G(x)) = G(x) is the g.f. of A155200. [Paul D. Hanna, Jun 30 2009]
EXAMPLE
G.f.: A(x) = 1 + 2*x + 14*x^2 + 256*x^3 + 18734*x^4 + 6932928*x^5 +...
log(A(x)) = 2*x + 24*x^2/2 + 692*x^3/3 + 72704*x^4/4 + 34465932*x^5/5 +...
log(A(x)) = 2*xA(x) + 2^4*(xA(x))^2/2 + 2^9*(xA(x))^3/3 + 2^16*(xA(x))^4/4 + ...
MATHEMATICA
terms = 12;
g[n_] := g[n] = If[n == 0, 1, (1/n)*Sum[2^(k^2)*g[n - k], {k, 1, n}]];
G[x_] = Sum[g[n]*x^n, {n, 0, terms}];
A[x_] = (1/x)*InverseSeries[Series[x/G[x], {x, 0, terms}], x];
CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(k=1, n, (2^k*x*A)^k/k))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A152476 A373870 A070813 * A370490 A187654 A280517
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2009
STATUS
approved