login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*(x*A(x))^n/n ), a power series in x with integer coefficients.
2

%I #8 Nov 14 2017 03:03:41

%S 1,2,14,256,18734,6932928,11550075900,80606017093632,

%T 2307293302418365718,268696321569450570148864,

%U 126770971088210751226430473604,241680859880056839468193961216049152

%N G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*(x*A(x))^n/n ), a power series in x with integer coefficients.

%C Compare to g.f. for Catalan sequence: C(x) = exp( Sum_{n>=1} (x*C(x))^n/n ).

%F G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x*G(x)) = G(x) is the g.f. of A155200. [_Paul D. Hanna_, Jun 30 2009]

%e G.f.: A(x) = 1 + 2*x + 14*x^2 + 256*x^3 + 18734*x^4 + 6932928*x^5 +...

%e log(A(x)) = 2*x + 24*x^2/2 + 692*x^3/3 + 72704*x^4/4 + 34465932*x^5/5 +...

%e log(A(x)) = 2*xA(x) + 2^4*(xA(x))^2/2 + 2^9*(xA(x))^3/3 + 2^16*(xA(x))^4/4 + ...

%t terms = 12;

%t g[n_] := g[n] = If[n == 0, 1, (1/n)*Sum[2^(k^2)*g[n - k], {k, 1, n}]];

%t G[x_] = Sum[g[n]*x^n, {n, 0, terms}];

%t A[x_] = (1/x)*InverseSeries[Series[x/G[x], {x, 0, terms}], x];

%t CoefficientList[A[x] + O[x]^terms, x] (* _Jean-François Alcover_, Nov 14 2017 *)

%o (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1,n,A=exp(sum(k=1,n,(2^k*x*A)^k/k))); polcoeff(A,n)}

%Y Cf. A000108, A156213.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 06 2009