login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156212
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*A000204(n)*x^n/n ), a power series in x with integer coefficients.
2
1, 2, 26, 732, 116390, 74067484, 206309321188, 2332635556428984, 108379291296448423558, 20417630652420537229303340, 15592143220454380480367922739340
OFFSET
0,2
COMMENTS
Compare to g.f. of Fibonacci sequence: exp( Sum_{n>=1} A000204(n)*x^n/n ), where A000204 is the Lucas numbers.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 26*x^2 + 732*x^3 + 116390*x^4 + 74067484*x^5 +...
log(A(x)) = 2*x + 2^4*3*x^2/2 + 2^9*4*x^3/3 + 2^16*7*x^4/4 + 2^25*11*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, 2^(m^2)*(fibonacci(m+1)+fibonacci(m-1))*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A371297 A206601 A156211 * A138524 A329556 A316747
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2009
STATUS
approved