login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156213
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)*C(2*n-1,n)*x^n/n ), a power series in x with integer coefficients.
1
1, 2, 26, 1756, 577190, 846763548, 5293107304932, 138013765804872888, 14838375909837963204230, 6530915607537754235471687212, 11710315776946229385945240614099084
OFFSET
0,2
COMMENTS
Compare to g.f. of Catalan sequence: exp( Sum_{n>=1} C(2*n-1,n)*x^n/n ), where C(2*n-1,n) = A001700(n-1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 26*x^2 + 1756*x^3 + 577190*x^4 + 846763548*x^5 +...
log(A(x)) = 2*x + 2^4*3*x^2/2 + 2^9*10*x^3/3 + 2^16*35*x^4/4 + 2^25*126*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, 2^(m^2)*binomial(2*m-1, m)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A158120 A209916 A337578 * A159318 A318132 A134795
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2009
STATUS
approved