login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156177 A bisection of A000436. 2
1, 352, 7869952, 1243925143552, 722906928498737152, 1118389087843083461066752, 3794717805092151129643367268352, 24809622030942586708931326728787197952, 284876472796397041595189052788763077537431552, 5358281136280777382502986500754127200892786313265152 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..9.

FORMULA

a(n) = | 3^(4*n)*2^(4*n+1)*lerchphi(-1,-4*n,1/3) |. - Peter Luschny, Apr 27 2013

a(n) = 2^(8*n+1)*3^(4*n)*(zeta(-4*n,1/6)-zeta(-4*n,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015

MAPLE

a := n -> 2^(8*n+1)*3^(4*n)*(Zeta(0, -4*n, 1/6)-Zeta(0, -4*n, 2/3)):

seq(a(n), n=0..9); # Peter Luschny, Mar 11 2015

MATHEMATICA

b[0] = 1; b[n_] := b[n] = (-1)^n (1-Sum[(-1)^i Binomial[2n, 2i] 3^(2n-2i) b[i], {i, 0, n-1}]);

a[n_] := b[2n];

Table[a[n], {n, 0, 9}] (* Jean-Fran├žois Alcover, Jul 08 2019 *)

PROG

(Sage)

from mpmath import mp, lerchphi

mp.dps = 64; mp.pretty = True

def A156177(n): return abs(3^(4*n)*2^(4*n+1)*lerchphi(-1, -4*n, 1/3))

[int(A156177(n)) for n in (0..9)]  # Peter Luschny, Apr 27 2013

CROSSREFS

Sequence in context: A255500 A256763 A279583 * A104160 A245440 A145023

Adjacent sequences:  A156174 A156175 A156176 * A156178 A156179 A156180

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 20:38 EDT 2021. Contains 346428 sequences. (Running on oeis4.)