The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156177 A bisection of A000436. 2
 1, 352, 7869952, 1243925143552, 722906928498737152, 1118389087843083461066752, 3794717805092151129643367268352, 24809622030942586708931326728787197952, 284876472796397041595189052788763077537431552, 5358281136280777382502986500754127200892786313265152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..9. FORMULA a(n) = | 3^(4*n)*2^(4*n+1)*lerchphi(-1,-4*n,1/3) |. - Peter Luschny, Apr 27 2013 a(n) = 2^(8*n+1)*3^(4*n)*(zeta(-4*n,1/6)-zeta(-4*n,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015 MAPLE a := n -> 2^(8*n+1)*3^(4*n)*(Zeta(0, -4*n, 1/6)-Zeta(0, -4*n, 2/3)): seq(a(n), n=0..9); # Peter Luschny, Mar 11 2015 MATHEMATICA b[0] = 1; b[n_] := b[n] = (-1)^n (1-Sum[(-1)^i Binomial[2n, 2i] 3^(2n-2i) b[i], {i, 0, n-1}]); a[n_] := b[2n]; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jul 08 2019 *) PROG (Sage) from mpmath import mp, lerchphi mp.dps = 64; mp.pretty = True def A156177(n): return abs(3^(4*n)*2^(4*n+1)*lerchphi(-1, -4*n, 1/3)) [int(A156177(n)) for n in (0..9)] # Peter Luschny, Apr 27 2013 CROSSREFS Sequence in context: A255500 A256763 A279583 * A104160 A245440 A145023 Adjacent sequences: A156174 A156175 A156176 * A156178 A156179 A156180 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 12:30 EDT 2024. Contains 374377 sequences. (Running on oeis4.)