login
A156178
A bisection of A000436.
1
8, 38528, 2583554048, 825787662368768, 806875574817679474688, 1884680130335630169428983808, 8996956010653823687821026161328128, 78730345253083926602212304047862498459648, 1165875553018316795143687738745856008854981050368, 27479800301221036852377324247444630678920385132167692288
OFFSET
0,1
FORMULA
a(n) = 2*(-144)^(2*n+1)*(zeta(-4*n-2, 1/6)-zeta(-4*n-2,2/3)), where zeta(a,z) is the generalized Riemann zeta function.
MAPLE
a := n -> 2*(-144)^(2*n+1)*(Zeta(0, -4*n-2, 1/6)-Zeta(0, -4*n-2, 2/3)):
seq(a(n), n=0..9); # Peter Luschny, Mar 11 2015
CROSSREFS
Sequence in context: A221629 A362280 A013788 * A256423 A349113 A175855
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2009
STATUS
approved