login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155913
Primes p such that (sum of digits of p) - (last digit of p) is prime.
1
23, 29, 31, 37, 53, 59, 71, 73, 79, 113, 127, 149, 163, 167, 211, 233, 239, 251, 257, 293, 307, 347, 349, 383, 389, 419, 431, 433, 439, 479, 491, 499, 503, 509, 521, 523, 563, 569, 587, 613, 617, 619, 653, 659, 673, 677, 701, 709, 743, 761, 769, 839, 853, 857
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
Presumably a(n) ~ n log n log log n. - Charles R Greathouse IV, Jan 02 2013
EXAMPLE
113 is in the sequence because it is prime and its sum of digits (1+1+3 = 5) - final digit(3) is prime (5-3 = 2).
MAPLE
A007953 := proc(n) add(d, d=convert(n, base, 10)) ; end: A010879 := proc(n) n mod 10 ; end: for i from 1 to 300 do p := ithprime(i) ; if isprime(A007953(p)-A010879(p)) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Jan 31 2009
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[Total[IntegerDigits[#]] - Last[IntegerDigits[#]]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
PROG
(PARI) is(n)=isprime(sumdigits(n) - n%10) && isprime(n) \\ Charles R Greathouse IV, Jan 02 2013
CROSSREFS
Cf. A000040.
Sequence in context: A049483 A112681 A078500 * A227919 A240898 A244077
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Corrected by R. J. Mathar, Jan 31 2009
STATUS
approved