login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155911
Composite numbers with final digit = number of prime factors (with multiplicity).
1
22, 24, 54, 62, 63, 82, 84, 96, 104, 122, 142, 153, 184, 202, 204, 216, 234, 262, 273, 294, 302, 333, 336, 343, 344, 362, 363, 364, 382, 405, 414, 416, 422, 423, 424, 444, 482, 483, 484, 486, 502, 542, 562, 564, 584, 603, 622, 644, 662, 663, 664, 675, 714
OFFSET
1,1
COMMENTS
Almost all numbers in this sequence are 9 mod 10. The first such number is a(10589) = 124659. - Charles R Greathouse IV, Jan 02 2013
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ k*n log n/(log log n)^8 with k = 1/161280. - Charles R Greathouse IV, Jan 02 2013
MAPLE
A010879 := proc(n) n mod 10 ; end: A001222 := proc(n) numtheory[bigomega](n); end: for n from 4 to 2000 do if not isprime(n) then if A010879(n) = A001222(n) then printf("%d, ", n) ; fi; fi; od: # R. J. Mathar, Jan 31 2009
MATHEMATICA
With[{upto=800}, Select[Complement[Range[upto], Prime[Range[ PrimePi[ upto]]]], Last[ IntegerDigits[#]] ==PrimeOmega[#]&]] (* Harvey P. Dale, Nov 29 2011 *)
PROG
(PARI) is(n)=!isprime(n) && bigomega(n)==n%10 \\ Charles R Greathouse IV, Jan 02 2013
CROSSREFS
Cf. A002808.
Sequence in context: A244397 A138603 A181454 * A061411 A053779 A177734
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Extended by R. J. Mathar, Jan 31 2009
Name clarified by Harvey P. Dale and Charles R Greathouse IV, Jan 02 2013
STATUS
approved