login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A155833
Primes in which smallest digit is final digit.
0
2, 3, 5, 7, 11, 31, 41, 43, 53, 61, 71, 73, 83, 97, 131, 151, 181, 191, 211, 241, 251, 271, 281, 311, 331, 353, 373, 383, 421, 431, 433, 443, 461, 463, 491, 521, 541, 563, 571, 593, 631, 641, 643, 653, 661, 673, 683, 691, 733, 743, 751, 761, 773, 787, 797, 811
OFFSET
1,1
COMMENTS
The final digit does not have to be the only smallest digit, so 211 is a term even though the second digit as well as the last digit equals 1. - Harvey P. Dale, Jul 21 2020
MAPLE
A010879 := proc(n) n mod 10 ; end: A054054 := proc(n) min(op(convert(n, base, 10))) ; end: for i from 1 to 500 do p := ithprime(i) ; if A010879(p) = A054054(p) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Jan 31 2009
MATHEMATICA
Select[Prime[Range[150]], Min[IntegerDigits[#]]==IntegerDigits[#][[-1]]&] (* Harvey P. Dale, Jul 21 2020 *)
PROG
(PARI) is(n)=my(d=digits(n)); d[#d]==vecsort(d)[1] && isprime(n) \\ Charles R Greathouse IV, Dec 29 2012
CROSSREFS
Subsequence of A038618.
Sequence in context: A075236 A155081 A157158 * A028867 A104154 A123214
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Corrected by R. J. Mathar, Jan 31 2009
STATUS
approved