login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154920
Denominators of a ternary BBP-type formula for log(3).
7
1, 18, 27, 324, 405, 4374, 5103, 52488, 59049, 590490, 649539, 6377292, 6908733, 66961566, 71744535, 688747536, 731794257, 6973568802, 7360989291, 69735688020, 73222472421, 690383311398, 721764371007, 6778308875544
OFFSET
0,2
COMMENTS
log(3) = Sum_{k>=0} (9/(2k+1)+1/(2k+2))/9^(k+1).
log(3) = 1 + Sum_{k>=0} (1/(2k+2)+1/(2k+3))/9^(k+1).
FORMULA
a(n) = (n+1)*9^[(n+1)/2] = 18*a(n-2) - 81*a(n-4).
Sum_{n>=0} 1/a(n) = log(3).
G.f.: (1+18*x+9*x^2)/(1-9*x^2)^2. - Jaume Oliver Lafont, Jan 29 2009
a(n) = (2-(-1)^n)*(n+1)*3^n. - Jaume Oliver Lafont, Sep 27 2009
Sum_{n>=0} (-1)^n/a(n) = log(8/3). - Amiram Eldar, Feb 26 2022
MATHEMATICA
LinearRecurrence[{0, 18, 0, -81}, {1, 18, 27, 324}, 30] (* Harvey P. Dale, Jan 10 2017 *)
PROG
(PARI) a(n)=(n+1)*9^((n+1)\2) \\ Jaume Oliver Lafont, Mar 25 2009
(Magma) [(2-(-1)^n)*(n+1)*3^n: n in [0..30]]; // Vincenzo Librandi, Jul 06 2015
CROSSREFS
Cf. A164985, A165132. - Jaume Oliver Lafont, Sep 25 2009
Sequence in context: A138336 A349485 A166630 * A094224 A128858 A141782
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Jan 17 2009, Jan 18 2009
STATUS
approved