OFFSET
0,2
COMMENTS
log(3) = Sum_{k>=0} (9/(2k+1)+1/(2k+2))/9^(k+1).
log(3) = 1 + Sum_{k>=0} (1/(2k+2)+1/(2k+3))/9^(k+1).
LINKS
David H. Bailey, A Compendium of BBP-Type Formulas for Mathematical Constants, 2017, page 14. [From Jaume Oliver Lafont, Sep 25 2009]
Index entries for linear recurrences with constant coefficients, signature (0,18,0,-81).
FORMULA
a(n) = (n+1)*9^[(n+1)/2] = 18*a(n-2) - 81*a(n-4).
Sum_{n>=0} 1/a(n) = log(3).
G.f.: (1+18*x+9*x^2)/(1-9*x^2)^2. - Jaume Oliver Lafont, Jan 29 2009
a(n) = (2-(-1)^n)*(n+1)*3^n. - Jaume Oliver Lafont, Sep 27 2009
Sum_{n>=0} (-1)^n/a(n) = log(8/3). - Amiram Eldar, Feb 26 2022
MATHEMATICA
LinearRecurrence[{0, 18, 0, -81}, {1, 18, 27, 324}, 30] (* Harvey P. Dale, Jan 10 2017 *)
PROG
(PARI) a(n)=(n+1)*9^((n+1)\2) \\ Jaume Oliver Lafont, Mar 25 2009
(Magma) [(2-(-1)^n)*(n+1)*3^n: n in [0..30]]; // Vincenzo Librandi, Jul 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Jan 17 2009, Jan 18 2009
STATUS
approved