OFFSET
1,1
COMMENTS
From Jaume Oliver Lafont, Oct 07 2009: (Start)
log(2)=(2/3)P(1,9,2,(1,0))
log(3)=(1/9)P(1,9,2,(9,1))
log(5)=(4/27)P(1,3^4,4,(9,3,1,0))
log(7)=(1/3^5)P(1,3^6,6,(405,81,72,9,5,0))
log(11)=(1/(2*3^9))P(1,3^10,10,(85293,10935,9477,1215,648,135,117,15,13,0))
log(13)=(1/3^5)P(1,3^6,6,(567,81,36,9,7,0))
See the link for the definition of P notation.
Equivalent expressions in reduced coefficients are given in the code section.
(End)
LINKS
David H. Bailey, A Compendium of BBP-formulas for mathematical constants. See p. 24.
PROG
(PARI) \\ Jaume Oliver Lafont, Oct 07 2009
log2=2*suminf(k=1, [0, 1][k%2+1]/k/3^k)
log3=suminf(k=1, [1, 3][k%2+1]/k/3^k)
log5=4*suminf(k=1, [0, 1, 1, 1][k%4+1]/k/3^k)
log7=suminf(k=1, [0, 5, 3, 8, 3, 5][k%6+1]/k/3^k)
log11=suminf(k=1, [0, 13, 5, 13, 5, 8, 5, 13, 5, 13][k%10+1]/k/3^k)/2
log13=suminf(k=1, [0, 7, 3, 4, 3, 7][k%6+1]/k/3^k)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaume Oliver Lafont, Sep 04 2009
STATUS
approved