login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes whose logarithms are known to possess ternary BBP formulas
3

%I #11 May 25 2023 08:58:15

%S 2,3,5,7,11,13

%N Primes whose logarithms are known to possess ternary BBP formulas

%C From _Jaume Oliver Lafont_, Oct 07 2009: (Start)

%C log(2)=(2/3)P(1,9,2,(1,0))

%C log(3)=(1/9)P(1,9,2,(9,1))

%C log(5)=(4/27)P(1,3^4,4,(9,3,1,0))

%C log(7)=(1/3^5)P(1,3^6,6,(405,81,72,9,5,0))

%C log(11)=(1/(2*3^9))P(1,3^10,10,(85293,10935,9477,1215,648,135,117,15,13,0))

%C log(13)=(1/3^5)P(1,3^6,6,(567,81,36,9,7,0))

%C See the link for the definition of P notation.

%C Equivalent expressions in reduced coefficients are given in the code section.

%C (End)

%H David H. Bailey, <a href="https://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf">A Compendium of BBP-formulas for mathematical constants</a>. See p. 24.

%o (PARI) \\ _Jaume Oliver Lafont_, Oct 07 2009

%o log2=2*suminf(k=1,[0,1][k%2+1]/k/3^k)

%o log3=suminf(k=1,[1,3][k%2+1]/k/3^k)

%o log5=4*suminf(k=1,[0,1,1,1][k%4+1]/k/3^k)

%o log7=suminf(k=1,[0,5,3,8,3,5][k%6+1]/k/3^k)

%o log11=suminf(k=1,[0,13,5,13,5,8,5,13,5,13][k%10+1]/k/3^k)/2

%o log13=suminf(k=1,[0,7,3,4,3,7][k%6+1]/k/3^k)

%Y Cf. A104885.

%K nonn,more

%O 1,1

%A _Jaume Oliver Lafont_, Sep 04 2009