

A039715


Primes modulo 17.


16



2, 3, 5, 7, 11, 13, 0, 2, 6, 12, 14, 3, 7, 9, 13, 2, 8, 10, 16, 3, 5, 11, 15, 4, 12, 16, 1, 5, 7, 11, 8, 12, 1, 3, 13, 15, 4, 10, 14, 3, 9, 11, 4, 6, 10, 12, 7, 2, 6, 8, 12, 1, 3, 13, 2, 8, 14, 16, 5, 9, 11, 4, 1, 5, 7, 11, 8, 14, 7, 9, 13, 2, 10, 16, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Nathaniel Johnston, Table of n, a(n) for n = 1..10000


FORMULA

By the Prime Number Theorem in Arithmetic Progressions, all nonzero residue classes are equiprobable. In particular, sum(k=1..n, a(k)) ~ 8.5n.  Charles R Greathouse IV, Apr 16 2012


MAPLE

seq(ithprime(n) mod 17, n=1..100); # Nathaniel Johnston, Jun 29 2011


MATHEMATICA

Table[Mod[Prime[n], 17], {n, 100}] (* Nathaniel Johnston, Jun 29 2011 *)
Mod[Prime[Range[100]], 17] (* Vincenzo Librandi, May 06 2014 *)


PROG

(PARI) primes(100)%17 \\ Charles R Greathouse IV, Apr 16 2012
(Sage) [mod(p, 17) for p in primes(500)] # Bruno Berselli, May 05 2014
(MAGMA) [p mod(17): p in PrimesUpTo(500)]; // Vincenzo Librandi, May 06 2014


CROSSREFS

Cf. A039701A039706, A038194, A007652, A039709A039714.
Sequence in context: A241506 A165132 A193063 * A039714 A039713 A142713
Adjacent sequences: A039712 A039713 A039714 * A039716 A039717 A039718


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling


STATUS

approved



