OFFSET
0,2
COMMENTS
The formula
log(5)=(4/27)Sum(k>=0,(1/81^k)(9/(4k+1)+3/(4k+2)+1/(4k+3)))
can be written in unit numerators:
log(5)=(4/3)Sum(k>=0,(1/81^k)(1/(4k+1)+1/(3*(4k+2))+1/(9*(4k+3)))),
so the sequence of denominators inside the sum satisfies
Sum(n>=0,1/a(n))=(3/4)log(5)
FORMULA
G.f.: (1+6*x+27*x^2+243*x^3+486*x^4+729*x^5)/(1-81*x^3)^2
PROG
(PARI) a(n)=[(n\3*4+1), 3*(n\3*4+2), 9*(n\3*4+3)][n%3+1]*81^(n\3)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Jaume Oliver Lafont, Sep 03 2009
STATUS
approved