login
A154560
(n+3)^2*n/2 + 1.
4
1, 9, 26, 55, 99, 161, 244, 351, 485, 649, 846, 1079, 1351, 1665, 2024, 2431, 2889, 3401, 3970, 4599, 5291, 6049, 6876, 7775, 8749, 9801, 10934, 12151, 13455, 14849, 16336, 17919, 19601, 21385, 23274, 25271, 27379, 29601, 31940, 34399, 36981
OFFSET
0,2
COMMENTS
8*a(n) is the y value of a solution (x, y) to the Diophantine equation 2*x^3+12*x^2 = y^2. The corresponding x value is A152811(n+1).
FORMULA
G.f.: (1+5*x-4*x^2+x^3)/(1-x)^4.
a(n) = A058794(n)/2.
a(n) = A117560(n+2) - n - 1.
a(2*n) = A144129(n+1).
a(2*n-1) = A141530(n+1). a(n) = -a(-n-4). - Bruno Berselli, Sep 05 2011
EXAMPLE
a(5) = (5+3)^2*5/2+1 = 64*5/2+1 = 161.
PROG
(PARI) {for(n=0, 40, print1((n+3)^2*n/2+1, ", "))}
(Magma) [(n+3)^2*n/2 + 1: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
CROSSREFS
Cf. A058794 (row 3 of A007754), A117560 (n*(n^2-1)/2-1), A144129 (4*n^3-3*n), A141530, A152811 (2*(n^2+2*n-2)).
Sequence in context: A330395 A081267 A052153 * A338548 A249275 A270695
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 12 2009
STATUS
approved