OFFSET
1,1
EXAMPLE
k=1 yields a term: prime(1) = 2 and 1 + 2 = 3 is prime, so a(1)=3;
k=2 yields a term: prime(2) = 3 and 2 + 3 = 5 is prime, so a(2)=5;
k=3 does not yield a term: prime(3) = 5 and 3 + 5 = 8 is composite;
k=4 yields a term: prime(4) = 7 and 4 + 7 = 11 is prime, so a(3)=11;
k=5 yields a term: prime(5) = 11 and 5 + 1 + 1 = 7 is prime, so a(4)=7.
MAPLE
A007953 := proc(n) add(d, d=convert(n, base, 10)) ; end proc:
for n from 1 to 300 do a := A007953(n) +A007953(ithprime(n)) ; if isprime(a) then printf("%d, ", a ) ; end if; end do: # R. J. Mathar, May 05 2010
MATHEMATICA
sod[n_]:=Total[IntegerDigits[n]]; Select[Table[sod[n]+sod[Prime[n]], {n, 300}], PrimeQ] (* Harvey P. Dale, Dec 11 2012 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Juri-Stepan Gerasimov, Jan 12 2009
EXTENSIONS
Corrected from a(35) onwards by R. J. Mathar, May 05 2010
Name corrected and Example section edited by Jon E. Schoenfield, Feb 11 2019
STATUS
approved