login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225487
Duplicate primes found by Rowland's recurrence in the order of their reappearance.
2
3, 5, 11, 7, 13, 101, 47, 53, 23, 19, 29, 37, 31, 41, 83, 73, 17, 43, 67, 157, 179, 167, 79, 443, 139, 113, 137, 97, 233, 61, 823, 71, 103, 151, 199, 499, 181, 229, 353, 313, 1889, 271, 317, 197, 613, 607, 127, 257, 89, 367, 223, 433, 239, 911, 109, 107, 557
OFFSET
1,1
COMMENTS
Among the first 10^8 terms of A132199 (Rowland's sequence of 1s and primes), 121 terms are prime. Eleven of them appear more than once, and so are a(1), ..., a(11).
Among the first 10^100 terms of A132199 there are 18321 primes; of these, 3074 are distinct and 351 repeated. - Giovanni Resta, Apr 08 2016
See the crossrefs for references, links, and additional comments.
LINKS
EXAMPLE
The first duplicate in Rowland's sequence of primes A137613 = 5, 3, 11, 3, 23, 3, 47, 3, 5, ... is 3, so a(1) = 3. The second duplicate is 5, so a(2) = 5.
MATHEMATICA
t = {}; b1 = 7; Do[b0 = b1; b1 = b0 + GCD[n, b0]; d = b1 - b0; If[d > 1, AppendTo[t, d]], {n, 2, 10^8}]; L = {}; Do[ If[MemberQ[Take[t, n - 1], t[[n]]], AppendTo[L, t[[n]]]], {n, 2, Length[t]}]; DeleteDuplicates[L]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, May 08 2013
EXTENSIONS
a(12)-a(57) from Giovanni Resta, Apr 08 2016
STATUS
approved