login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A154349
Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).
1
0, 0, 0, 1, 2, 8, 18, 0, 34, 170, 1643, 3603, 0, 25118, 139063, 474559, 284490, 984006, 6536387, 24265729, 18678366, 96214018, 277799290, 1282283434, 2077807072, 1899874612, 19252363859, 44221482383, 1967547352, 29743945396, 1265868622
OFFSET
0,5
COMMENTS
Note that, if a(n) != 0 then Motzkin number A001006(n) is a composite number (A002808), otherwise A001006(n) is a noncomposite number (A008578). See A152770.
LINKS
FORMULA
a(n) = A001065(A001006(n)) - A032741(A001006(n)) = A152770(A001006(n)).
MAPLE
with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(sigma(M(n))-M(n)-tau(M(n))+1, n = 0 .. 30); # Emeric Deutsch, Jan 12 2009
MATHEMATICA
mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; diff[n_] := DivisorSigma[1, n] - DivisorSigma[0, n] - n + 1; Table[diff[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 07 2009
EXTENSIONS
Extended by Emeric Deutsch, Jan 12 2009
STATUS
approved