login
A154230
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T(n-2, k-1), read by rows.
6
1, 1, 1, 1, 100, 1, 1, 455, 455, 1, 1, 1435, 98810, 1435, 1, 1, 3711, 1135370, 1135370, 3711, 1, 1, 8388, 7849141, 464306300, 7849141, 8388, 1, 1, 17161, 40410421, 10431621081, 10431621081, 40410421, 17161, 1, 1, 32495, 169040786, 130822910455, 7140071740062, 130822910455, 169040786, 32495, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 102, 912, 101682, 2278164, 480021360, 20944097328, ...}.
The row sums of this class of sequences (see cross references) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = (n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30 = A000538(n+1). - G. C. Greubel, Mar 02 2021
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T(n-2, k-1) with T(n, 0) = T(n, n) = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 100, 1;
1, 455, 455, 1;
1, 1435, 98810, 1435, 1;
1, 3711, 1135370, 1135370, 3711, 1;
1, 8388, 7849141, 464306300, 7849141, 8388, 1;
1, 17161, 40410421, 10431621081, 10431621081, 40410421, 17161, 1;
MAPLE
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) +T(n-1, k-1) +((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T[n-2, k-1] ];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
PROG
(Sage)
def f(n): return (n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30
def T(n, k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
(Magma)
f:= func< n | (n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30 >;
function T(n, k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Jan 05 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 02 2021
STATUS
approved