OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 280, 3160, 1245320, 41045800, 36206334160, ...}.
The row sums of this class of sequences (see cross-references) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = (n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12 = A000539(n+1). - G. C. Greubel, Mar 02 2021
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1) with T(n, 0) = T(n, n) = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 278, 1;
1, 1579, 1579, 1;
1, 6005, 1233308, 6005, 1;
1, 18207, 20504692, 20504692, 18207, 1;
1, 47216, 194715939, 35816807848, 194715939, 47216, 1;
1, 108993, 1319518787, 1302709376779, 1302709376779, 1319518787, 108993, 1;
MAPLE
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T[n-2, k-1] ];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
PROG
(Sage)
def f(n): return binomial(n+2, 2)^2*(2*n^2+6*n+3)/3
def T(n, k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
(Magma)
f:= func< n | Binomial(n+2, 2)^2*(2*n^2+6*n+3)/3 >;
function T(n, k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Jan 05 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 02 2021
STATUS
approved