login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154229
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)^2*T(n-2, k-1), read by rows.
6
1, 1, 1, 1, 38, 1, 1, 139, 139, 1, 1, 365, 8828, 365, 1, 1, 807, 70492, 70492, 807, 1, 1, 1592, 357459, 7062136, 357459, 1592, 1, 1, 2889, 1404923, 98777227, 98777227, 1404923, 2889, 1, 1, 4915, 4631612, 824036625, 14498379854, 824036625, 4631612, 4915, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 40, 280, 9560, 142600, 7780240, 200370080, 16155726160, ...}.
The row sums of this class of sequences (see cross-references) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = binomial(n+2, 2)^2 = A000537(n+1). - G. C. Greubel, Mar 02 2021
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)^2*T(n-2, k-1) with T(n, 0) = T(n, n) = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 38, 1;
1, 139, 139, 1;
1, 365, 8828, 365, 1;
1, 807, 70492, 70492, 807, 1;
1, 1592, 357459, 7062136, 357459, 1592, 1;
1, 2889, 1404923, 98777227, 98777227, 1404923, 2889, 1;
1, 4915, 4631612, 824036625, 14498379854, 824036625, 4631612, 4915, 1;
MAPLE
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) + T(n-1, k-1) + binomial(n+2, 2)^2*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + Binomial[n+2, 2]^2*T[n-2, k-1]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
PROG
(Sage)
def f(n): return binomial(n+2, 2)^2
def T(n, k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
(Magma)
f:= func< n | Binomial(n+2, 2)^2 >;
function T(n, k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 05 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 02 2021
STATUS
approved