login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153410
Middle of 3 consecutive prime numbers, p1, p2, p3, such that p1*p2*p3*d1*d2 = average of twin prime pairs; d1 (delta) = p2 - p1, d2 (delta) = p3 - p2.
4
3, 5, 23, 67, 233, 503, 683, 1013, 1759, 2099, 2797, 3169, 10663, 12391, 12899, 13487, 15149, 18583, 20563, 21881, 25373, 26237, 26681, 33613, 36787, 36943, 41411, 41443, 43573, 61547, 63337, 63841, 68909, 71999, 75721, 76367, 76481, 86677
OFFSET
1,1
LINKS
EXAMPLE
2*3*5*1*2 = 60 and 60 +- 1 are primes.
3*5*7*2*2 = 420 and 420 +- 1 are primes.
19*23*29*4*6 = 304152 and 304152 +- 1 are primes.
MATHEMATICA
lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; p3=Prime[n+2]; d1=p2-p1; d2=p3-p2; a=p1*p2*p3*d1*d2; If[PrimeQ[a-1]&&PrimeQ[a+1], AppendTo[lst, p2]], {n, 8!}]; lst
cpnQ[{a_, b_, c_}]:=Module[{x=Times@@Join[{a, b, c}, Differences[ {a, b, c}]]}, AllTrue[ x+{1, -1}, PrimeQ]]; Select[Partition[ Prime[Range[ 10000]], 3, 1], cpnQ][[All, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 01 2020 *)
KEYWORD
nonn
AUTHOR
STATUS
approved