login
A153406
Smallest of 3 consecutive prime numbers such that p1*p2*p3+d1+d2+1=average of twin prime pairs, d1(delta)=p2-p1,d2(delta)=p3-p2.
8
4813, 9007, 13831, 33791, 35023, 48337, 51577, 52153, 61297, 62207, 77743, 95107, 102607, 105137, 105673, 109663, 111767, 114781, 119747, 128221, 135367, 136727, 138679, 149197, 153949, 159787, 163199, 165437, 174829, 188677, 195973, 208009
OFFSET
1,1
COMMENTS
4813*4817*4831+4+14=112002971670+-1=primes,...
LINKS
MATHEMATICA
lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; p3=Prime[n+2]; d1=p2-p1; d2=p3-p2; a=p1*p2*p3+d1+d2+1; If[PrimeQ[a-1]&&PrimeQ[a+1], AppendTo[lst, p1]], {n, 8!}]; lst
s3cpnQ[n_]:=Module[{c=Times@@n+Total[Differences[n]]+1}, AllTrue[c+{1, -1}, PrimeQ]]; Transpose[Select[Partition[ Prime[Range[ 20000]], 3, 1], s3cpnQ]] [[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 05 2014 *)
KEYWORD
nonn
AUTHOR
STATUS
approved