login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153024
a(n) is the number of iterations of the map k -> A048050(k) to reach zero. If we never reach 0, then a(n) = -1. A048050 gives the sum of proper divisors of k, excluding both 1 and n from the sum.
2
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 3, 4, 4, 1, 5, 1, 4, 3, 2, 1, 7, 2, 5, 6, 7, 1, 2, 1, 3, 4, 2, 6, 8, 1, 4, 5, 3, 1, 2, 1, 6, 4, 3, 1, -1, 2, 3, 5, 5, 1, 7, 5, 5, 3, 2, 1, 2, 1, 5, 4, 6, 6, 7, 1, 4, 6, 2, 1, 6, 1, 6, -1, 5, 6, 2, 1, 7, 6, 2, 1, 2, 3, 5, 4, 6, 1, 9, 5, -1, 3, 3, 8, 10, 1, 7, 6, 5, 1, 2, 1, 7, 6
OFFSET
1,4
COMMENTS
Previous name was: The number of iterations for A153023 to converge when started at n.
LINKS
EXAMPLE
With m(n) = A048050(n) we have: m(18) -> m(20) -> m(21) -> m(10) -> m(7) -> 0, thus a(18) = 5.
On the other hand, m(48) = 75 and m(75) = 48, so we ended in a cycle, thus a(48) = a(75) = -1. - Edited by Antti Karttunen, Nov 03 2017
MAPLE
f := proc(n) L := {} ; a := n ; while not isprime(a) do a := A048050(a) ; if a in L then RETURN(-1) ; fi; L := L union {a} ; od; 1+nops(L) ; end:
A153023 := proc(n) if n =1 then 1; elif isprime(n) then 1; else f(n) ; fi; end: # R. J. Mathar, May 25 2013
MATHEMATICA
With[{nn = 100}, Table[If[! CompositeQ[n], 1, Length@ NestWhileList[DivisorSigma[1, #] - (# + 1) &, n, Nor[PrimeQ@ #, # == 0] &, 1, 100]] /. k_ /; k == nn + 1 -> -1, {n, 104}]] (* Michael De Vlieger, Nov 03 2017 *)
PROG
(Scheme)
(define (A153024 n) (let loop ((n n) (visited (list n)) (i 0)) (let ((next (A048050 n))) (cond ((zero? n) i) ((member next visited) -1) (else (loop next (cons next visited) (+ 1 i)))))))
(define (A048050 n) (if (= 1 n) 0 (- (A001065 n) 1)))
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 03 2017
CROSSREFS
Sequence in context: A342085 A050379 A344589 * A066921 A076649 A157235
KEYWORD
sign
AUTHOR
Andrew Carter (acarter09(AT)newarka.edu), Dec 16 2008
EXTENSIONS
Name changed and more terms added by Antti Karttunen, Nov 03 2017
STATUS
approved