login
A152605
a(1) = 1; thereafter a(n) is always the smallest integer > a(n-1) not leading to a contradiction, such that any five consecutive digits in the sequence sum up to a prime.
3
1, 2, 3, 4, 7, 12, 30, 51, 83, 231, 232, 312, 323, 327, 413, 414, 530, 541, 701, 811, 812, 1101, 2110, 3011, 6301, 7030, 7103, 8110, 9011, 21011, 21013, 21017, 21019, 21053, 21055, 21059, 21071, 21073, 21077, 21079, 21413, 21415, 21419
OFFSET
1,2
COMMENTS
Computed by Jean-Marc Falcoz.
From a(116)=6100011 on, there starts a pattern of 75 terms which then repeats indefinitely (with duplication of a substring of 5 digits in the middle of each term). - M. F. Hasler, Oct 16 2009
PROG
(PARI) A152605(n, show_all=0, s=[1, 2, 3, 4, 7, 12, 30, 51, 83, 231, 232, 312, 323, 327, 413, 414, 530, 541, 701, 811, 812, 1101])={ my(a); for(i=1, n, if(i<=#s, a=s[i], my(ld=a%10^4); while(a++, my(t=a+ld*10^#Str(a)); forstep(d=#Str(a)-1, 0, -1, isprime(sum(j=d, d+4, t\10^j%10))&next; a+=10^d-a%10^d-1; next(2)); break)); show_all&print1(a", ")); a } \\ M. F. Hasler, Oct 16 2009
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 23 2009
STATUS
approved