login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152606
a(1) = 1; thereafter a(n) is always the smallest integer > a(n-1) not leading to a contradiction, such that any six consecutive digits in the sequence sum up to a prime.
2
1, 2, 3, 4, 5, 8, 9, 21, 45, 83, 89, 450, 503, 630, 701, 810, 901, 2101, 2103, 4121, 6301, 6303, 6503, 6901, 43030, 70103, 81010, 90101, 210101, 210103, 210107, 210109, 210143, 210145, 210149, 210161, 210163, 210167, 210169, 210503
OFFSET
1,2
COMMENTS
Computed by Jean-Marc Falcoz.
From a(269) = 1010001010 on, there starts a pattern of 104 terms, which then repeats indefinitely (with 6 digits in the middle of each term duplicated). - M. F. Hasler, Oct 16 2009
PROG
(PARI) a(n, show_all=0, s=[1, 2, 3, 4, 5, 8, 9, 21, 45, 83, 89, 450, 503, 630, 701, 810, 901, 2101, 2103, 4121, 6301, 6303, 6503, 6901, 43030])={ my(a, nd=#Str(s[ #s])); for(i=1, n, if( i<=#s, a=s[i], my(ld=a%10^nd); while(a++, my(t=a+ld*10^#Str(a)); forstep(d=#Str(a)-1, 0, -1, isprime(sum(j=d, d+nd, t\10^j%10))&next; a+=10^d-a%10^d-1; next(2)); break)); show_all & print1(a", ")); a} \\ M. F. Hasler, Oct 16 2009
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 23 2009
STATUS
approved