|
|
A151906
|
|
a(0) = 0, a(1) = 1; for n>1, a(n) = 8*A151905(n) + 4.
|
|
8
|
|
|
0, 1, 4, 4, 4, 12, 4, 4, 12, 12, 12, 36, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 12, 12, 36, 36, 36, 108, 36, 36, 108, 108, 108, 324, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 12, 12, 36, 36, 36, 108, 36, 36, 108, 108, 108
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n.
|
|
REFERENCES
|
S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
|
|
LINKS
|
|
|
FORMULA
|
The three trisections are essentially A147582, A147582 and 3*A147582 respectively. More precisely, For t >= 1, a(3t) = a(3t+1) = A147582(t+1) = 4*3^(wt(t)-1), a(3t+2) = 4*A147582(t+1) = 4*3^wt(t). See A151907 for explanation.
|
|
EXAMPLE
|
Note that this sequence also can be written as an irregular triangle read by rows in which the row lengths are the terms of A011782 multiplied by 3, as shown below:
0,1, 4;
4,4,12;
4,4,12,12,12,36;
4,4,12,12,12,36,12,12,36,36,36,108;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,324;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,... (End)
|
|
MAPLE
|
f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
A151904 := proc(n) local k, j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
if (n=0) then 0;
elif (n=1) then 1;
elif (n=2) then 0;
else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
end;
if (n=0) then 0;
elif (n=1) then 1;
fi;
end;
|
|
MATHEMATICA
|
wt[n_] := DigitCount[n, 2, 1];
f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]];
A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]];
A151905[n_] := Module[{k, j}, Switch[n, 0, 0, 1, 1, 2, 0, _, k = Floor[Log2[n/3]]; j = n - 3*2^k; A151904[j]]];
a[n_] := Switch[n, 0, 0, 1, 1, _, 8 A151905[n] + 4];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|