|
|
A151905
|
|
a(0) = a(2) = 0, a(1) = 1; for n >= 3, n = 3*2^k+j, 0 <= j < 3*2^k, a(n) = A151904(j).
|
|
6
|
|
|
0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 4, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,12
|
|
COMMENTS
|
Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n in a 45-degree sector that are not on the main stem.
|
|
REFERENCES
|
S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
|
|
LINKS
|
Table of n, a(n) for n=0..90.
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
N. J. A. Sloane, Illustration of initial terms (annotated copy of figure on p. 222 of Ulam)
|
|
EXAMPLE
|
If written as a triangle:
0,
1, 0,
0, 0, 1,
0, 0, 1, 1, 1, 4,
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13,
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121,
...
then the rows converge to A151904.
|
|
MAPLE
|
f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
A151904 := proc(n) local k, j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
A151905 := proc (n) local k, j;
if (n=0) then 0;
elif (n=1) then 1;
elif (n=2) then 0;
else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
end;
|
|
CROSSREFS
|
Cf. A151904, A151906, A151907, A139250, A151895, A151896.
Sequence in context: A152889 A216273 A327517 * A226997 A245965 A078669
Adjacent sequences: A151902 A151903 A151904 * A151906 A151907 A151908
|
|
KEYWORD
|
nonn,tabf,changed
|
|
AUTHOR
|
N. J. A. Sloane, Jul 31 2009
|
|
STATUS
|
approved
|
|
|
|