login
A147693
Triangle read by rows: numbers n and prime numbered columns p such that T(n, p) is n mod p.
3
0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 2, 3, 1, 1, 0, 4, 2, 0, 1, 0, 3, 1, 2, 1, 4, 0, 0, 0, 2, 5, 1, 1, 1, 3, 6, 2, 0, 0, 2, 4, 0, 3, 1, 1, 0, 0, 1, 4, 2, 0, 1, 1, 2, 5, 3, 1, 2, 2, 3, 6, 4, 0, 0, 0, 3, 4, 7, 5, 1, 1, 1, 4, 5, 8, 6, 2, 0, 0, 2, 0, 6, 9, 7, 3, 1, 1, 0, 1, 0, 10, 8, 4, 2
OFFSET
2,7
COMMENTS
The triangle begins with T(2, 2).
A number p is prime, beginning a new column, iff T(p, k) is nonzero for all k < p; T(p, p) is then 0.
Each row can be produced from the previous row by adding one to each number and resetting to zero any which would equal their column number. A complex pattern emerges if values in the triangle are taken modulo 2.
Rows are unique. Row n has length A000720(n). - Jason Kimberley, Nov 2012
LINKS
Eric Weisstein's World of Mathematics, Redheffer Matrix
FORMULA
a(A046992(n-1)+i) = T(n,i) = n mod A000040(i), where 1 <= i <= A000720(n). Jason Kimberley, Nov 21 2012
EXAMPLE
The triangle begins as so:
[2] 0
[3] 1 0
... 0 1
[5] 1 2 0
... 0 0 1
[7] 1 1 2 0
... 0 2 3 1
... 1 0 4 2
... 0 1 0 3
PROG
(Magma) A147693 :=
func< n | [n mod p:p in PrimesUpTo(n)] >;
[A147693(n):n in[2..19]]; // Jason Kimberley, Nov 28 2012
CROSSREFS
Sequence in context: A129753 A356324 A307247 * A070936 A014081 A091890
KEYWORD
easy,nonn,tabf
AUTHOR
Reikku Kulon, Nov 10 2008
STATUS
approved