

A144722


a(n) is the smallest positive integer m such that b * (Product_{k=1..n} a(k)) + 1 is prime, with b = 3.


11



2, 3, 4, 6, 8, 21, 23, 26, 30, 36, 37, 39, 42, 54, 57, 73, 83, 86, 88, 91, 93, 98, 99, 112, 120, 137, 140, 142, 148, 161, 162, 169, 171, 174, 179, 237, 247, 294, 312, 335, 340, 382, 474, 475, 484, 498, 500, 539, 589, 598, 653, 654, 660, 704, 720, 732, 789, 804
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

3*1+1=4 is not prime (omitted).
a(1)=2 because 3*2+1=7 is prime.
a(2)=3 because 3*2*3+1=19 is prime.


MATHEMATICA

k = 3; a = {}; Do[If[PrimeQ[k*n + 1], k = k*n; AppendTo[a, n]], {n, 1, 3000}]; a


CROSSREFS

Cf. A046966, A046972, A144717, A144718, A144723, A144724, A144725, A144726, A144727, A144728, A144729, A144730, A144731.


KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



