login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144721
a(0) = 2, a(1) = 5, a(n) = 4 * a(n-1) - a(n-2).
3
2, 5, 18, 67, 250, 933, 3482, 12995, 48498, 180997, 675490, 2520963, 9408362, 35112485, 131041578, 489053827, 1825173730, 6811641093, 25421390642, 94873921475, 354074295258, 1321423259557, 4931618742970, 18405051712323, 68688588106322, 256349300712965
OFFSET
0,1
COMMENTS
For all members x of the sequence, 3*x^2 - 11 is a square. - Sture Sjöstedt, Nov 30 2011
FORMULA
Sequence satisfies -11 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v.
G.f.: (2 - 3*x) / (1 - 4*x + x^2). a(n) = (11 + a(n-1)^2) / a(n-2).
a(n) = ((2-sqrt(3))^n*(-1+2*sqrt(3))+(2+sqrt(3))^n*(1+2*sqrt(3)))/(2*sqrt(3)). - Colin Barker, Oct 12 2015
MATHEMATICA
a[0] := 2; a[1] := 5; a[n_] := a[n] = 4a[n - 1] - a[n - 2]; Table[a[n], {n, 0, 24}] (* Alonso del Arte, Nov 30 2011 *)
PROG
(PARI) {a(n) = real( (2 + quadgen(12))^n * ( 2 + 1 / quadgen(12) ))}
(PARI) {a(n) = subst( (4*polchebyshev(n) + polchebyshev(n-1)) / 3, x, 2)}
(Magma) I:=[2, 5]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 06 2015
(PARI) Vec((2-3*x)/(1-4*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
CROSSREFS
Cf. A144720(n) = a(-n).
Sequence in context: A150019 A005753 A150020 * A150021 A150022 A150023
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 19 2008
STATUS
approved