login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144644
Triangle in A144643 read by columns downwards.
5
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 0, 15, 25, 10, 1, 0, 0, 25, 90, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1, 0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1
OFFSET
0,9
COMMENTS
The Bell transform of the sequence "g(n) = 1 if n<4 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
LINKS
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
FORMULA
Bivariate e.g.f. A144644(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G4(x)), where G4(x) = Sum_{i=1..4} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019
From G. C. Greubel, Oct 11 2023: (Start)
T(n, k) = A144643(k, n).
T(n, k) = A144645(n, n-k).
T(n, k) = t(k, n), where t(n, k) = Sum_{j=0..3} binomial(k-1, j) * t(n-1, k-j-1), with t(n,n) = 1, t(n,k) = 0 if n < 1 or n > k.
Sum_{k=0..n} T(n, k) = A001681(n). (End)
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 7, 6, 1;
0, 0, 15, 25, 10, 1;
0, 0, 25, 90, 65, 15, 1;
0, 0, 35, 280, 350, 140, 21, 1;
0, 0, 35, 770, 1645, 1050, 266, 28, 1;
0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1;
0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1;
0, 0, 0, 5775, 90475, 211750, 172095, 63525, 11880, 1155, 55, 1;
MATHEMATICA
With[{r=15}, Table[BellY[n, k, {1, 1, 1, 1}], {n, 0, r}, {k, 0, n}]]//Flatten (* Jan Mangaldan, May 22 2016 *)
PROG
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<4 else 0, 12) # Peter Luschny, Jan 19 2016
(PARI) \\ Function bell_matrix is defined in A264428.
B = bell_matrix( n -> {if(n < 4, 1, 0)}, 9); for(n = 0, 9, printp(); for(k = 1, n, print1(B[n, k], " "))); \\ Peter Luschny, Apr 17 2019
(Magma)
function t(n, k)
if k eq n then return 1;
elif k le n-1 or n le 0 then return 0;
else return (&+[Binomial(k-1, j)*t(n-1, k-j-1): j in [0..3]]);
end if;
end function;
A144644:= func< n, k | t(k, n) >;
[A144644(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 11 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved