login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143715
Number of subsets {a,b,c} of {1,...,n} such that (a+b)^2+c^2 is a square (where c = max(a,b,c)).
2
0, 0, 2, 3, 3, 6, 6, 10, 14, 14, 14, 25, 25, 25, 35, 43, 43, 50, 50, 67, 85, 85, 85, 113, 113, 113, 123, 139, 139, 158, 158, 173, 191, 191, 197, 230, 230, 230, 244, 286, 286, 321, 321, 337, 379, 379, 379, 456, 456, 456, 474, 493, 493, 512, 536, 589, 609, 609, 609
OFFSET
1,3
COMMENTS
Also: Number of cuboids of side lengths not exceeding n such that the shortest path over the surface from one vertex to the opposite one is integral (cf. link to Project Euler).
Also: partial sums of A143714, i.e., number of triples (a,b,c), 1 <= a <= b <= c <= n, such that (a+b)^2+c^2 is a square.
LINKS
Project Euler, Problem 86: Cuboid Route, (2005)
FORMULA
a(n) = sum( A143714(i), i=1..n ).
EXAMPLE
We have a(4) = a(5) = 3, corresponding to the cuboids of size 3 x 3 x 1, 3 x 2 x 2 and 4 x 2 x 1, i.e. to A143714(3)=2 and A143714(4)=1. No other cuboids with side lengths not exceeding 5 have the property that (a+b)^2+c^2 is a square. See A143714 for more details.
PROG
(PARI) A143715(M)=sum(a=1, M, sum(b=a, M, sum(c=b, M, issquare((a+b)^2+c^2))))
/* or: */ s=0; A143715=vector(100, i, s+=A143714[i])
CROSSREFS
Cf. A143714 (first differences).
Sequence in context: A101437 A039856 A301703 * A159685 A370804 A251729
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Aug 29 2008, Aug 30 2008
STATUS
approved