login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301703
a(n) is the number of positive coefficients of the polynomial (x-1)*(x^2-1)*...*(x^n-1).
1
1, 2, 3, 3, 6, 6, 9, 13, 16, 18, 21, 27, 34, 32, 42, 47, 54, 62, 73, 79, 85, 96, 104, 113, 123, 140, 150, 171, 174, 190, 200, 211, 234, 240, 263, 275, 301, 304, 322, 351, 368, 396, 413, 455, 451, 470, 487, 499, 531, 540, 592, 585, 631, 630, 687, 691, 734, 774, 793, 863
OFFSET
1,2
LINKS
Dorin Andrica and Ovidiu Bagdasar, On some results concerning the polygonal polynomials, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11.
EXAMPLE
Denote P_n(x) = (x-1)...(x^n-1).
P_1(x) = x-1, hence a(1)=1.
P_2(x) = (x-1)*(x^2-1) = x^3-x^2-x+1, hence a(2)=2;
P_3(x) = (x-1)*(x^2-1)*(x^3-1) = x^6-x^5-x^4+x^2+x-1, hence a(3)=3;
P_4(x) = (x-1)*(x^2-1)*(x^3-1)*(x^4-1) = x^10 - x^9 - x^8+2x^5-x^2-x+1, hence a(4)=3.
MAPLE
a:= n-> nops(select(x-> x>0, [(p-> seq(coeff(p, x, i),
i=0..degree(p)))(expand(mul(x^i-1, i=1..n)))])):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 29 2019
MATHEMATICA
Table[Count[CoefficientList[Expand[Times@@(x^Range[n]-1)], x], _?(#>0&)], {n, 60}] (* Harvey P. Dale, Feb 10 2019 *)
PROG
(PARI) a(n) = #select(x->(x>0), Vec((prod(k=1, n, (x^k-1))))); \\ Michel Marcus, Apr 02 2018
CROSSREFS
Cf. A231599: a(n) is the number of positive coefficients in row n.
Sequence in context: A379303 A101437 A039856 * A143715 A159685 A370804
KEYWORD
nonn,easy
AUTHOR
Ovidiu Bagdasar, Mar 25 2018
STATUS
approved