login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143700 a(n) is the least odd number m minimizing A007947(m*(2^n-m)). 8
1, 1, 1, 1, 5, 1, 3, 13, 169, 25, 243, 375, 11, 49, 7, 3, 18225, 71875, 4913, 1701, 144027, 1825, 3483, 2197, 9156027, 131989, 1103, 5103, 38525, 458703, 1523, 3483891, 19283525 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Smallest odd number a(n) such that product of distinct prime divisors of (2^n)*a(n)*(2^n - a(n)) is the smallest available for a(n) <= 2^x - a(n) < 2^x.
Product of distinct prime divisors of (2^n)*a(n)*(2^n - a(n)) is also called radical: rad((2^n)*a(n)*(2^n - a(n))).
For numbers 2^n - a(n) see A143701.
For minimal values of rad((2^n)*a(n)*(2^n - a(n))) see A143702.
Related to the abc conjecture. - M. F. Hasler, Nov 13 2008
LINKS
MATHEMATICA
a = {{1, 1}}; aa = {1}; bb = {}; rr = {}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; aa (* Artur Jasinski with assistance of M. F. Hasler *)
PROG
(PARI) A143700(n) = {my(b=1, m=2^n-b); forstep(a=3, 2^(n-1), 2, A007947(a)*A007947(2^n-a)<m || next; m=A007947((2^n-a)*b=a)); b; } \\ M. F. Hasler, Nov 13 2008
CROSSREFS
Sequence in context: A365457 A365456 A134894 * A036790 A201847 A185559
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Nov 10 2008
EXTENSIONS
a(28)-a(33) from M. F. Hasler, Nov 13 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)