The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143698 12 times hexagonal numbers: 12*n*(2*n-1). 3
 0, 12, 72, 180, 336, 540, 792, 1092, 1440, 1836, 2280, 2772, 3312, 3900, 4536, 5220, 5952, 6732, 7560, 8436, 9360, 10332, 11352, 12420, 13536, 14700, 15912, 17172, 18480, 19836, 21240, 22692, 24192, 25740, 27336, 28980, 30672, 32412 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sequence found by reading the line from 0, in the direction 0, 12,..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. - Omar E. Pol, Oct 02 2011 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 24*n^2 - 12*n = 12*A000384(n) = 6*A002939(n) = 4*A094159(n) = 3*A085250(n) = 2*A152746(n). a(n) = a(n-1) + 48*n - 36, with a(0)=0. - Vincenzo Librandi, Dec 14 2010 From G. C. Greubel, May 30 2021: (Start) G.f.: 12*x*(1 + 3*x)/(1-x)^3. E.g.f.: 12*x*(1 + 2*x)*exp(x). (End) MAPLE seq(12*n*(2*n-1), n=0..40); # G. C. Greubel, May 30 2021 MATHEMATICA Table[24n^2-12n, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 12, 72}, 40] (* Harvey P. Dale, Sep 24 2015 *) PROG (PARI) a(n)=24*n^2-12*n \\ Charles R Greathouse IV, Jun 17 2017 (Sage) [12*n*(2*n-1) for n in (0..40)] # G. C. Greubel, May 30 2021 CROSSREFS Cf. A000384, A002939, A085250, A094159, A152746, A154617. Sequence in context: A338261 A101523 A340302 * A304164 A199531 A188660 Adjacent sequences: A143695 A143696 A143697 * A143699 A143700 A143701 KEYWORD easy,nonn AUTHOR Omar E. Pol, Jan 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 13:00 EDT 2023. Contains 365647 sequences. (Running on oeis4.)