The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143350 Triangle read by rows, replace column 1 of triangle A143349 with A095116, 1<=k<=n. 2
 2, 4, -1, 7, -1, -1, 10, -2, -1, 0, 15, -2, -1, 0, -1, 18, -3, -2, 0, -1, 1, 23, -3, -2, 0, -1, 1, -1, 26, -4, -2, 0, -1, 1, -1, 0, 31, -4, -3, 0, -1, 1, -1, 0, 0, 38, -5, -3, 0, -2, 1, -1, 0, 0, 1, 41, -5, -3, 0, -2, 1, -1, 0, 0, 1, -1, 48, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, 53, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, -1, 56, -7, -4, 0, -2, 2, -2, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Triangle A143349 = a type of Mobius transform which converts sequences to triangles with row sums = the same sequence. In this case, we convert p(n) to triangle A143349 having row sums = p(n), the primes. We begin with p(n), adding (n-1) = A095116: (2, 4, 7, 10, 15, 18, 23,...). We then replace column 1 of triangle A143349 with A095116 resulting in A143350 with row sums = p(n). LINKS FORMULA Triangle read by rows, replace column 1 of triangle A143349 with A095116, 1<=k<=n. A143349 = p(n)+(n-1) & A143349 = a type of Mobius transform. EXAMPLE First few rows of the triangle = 2; 4, -1; 7, -1, -1; 10, -2, -1, 0; 15, -2, -1, 0, -1; 18, -3, -2, 0, -1, 1; 23, -3, -2, 0, -1, 1, -1; 26, -4, -2, 0, -1, 1, -1, 0; 31, -4, -3, 0, -1, 1, -1, 0, 0; 38, -5, -3, 0, -2, 1, -1, 0, 0, 1; ... CROSSREFS Cf. A143349, A095116, A008683, A000040. Sequence in context: A137478 A089087 A142146 * A302541 A119303 A256107 Adjacent sequences:  A143347 A143348 A143349 * A143351 A143352 A143353 KEYWORD tabl,sign AUTHOR Gary W. Adamson, Aug 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 20:31 EDT 2021. Contains 343989 sequences. (Running on oeis4.)