login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143351 Expansion of x/(1 -x^2 -x^4 -x^7 -x^8 -x^9 -x^10). 5
1, 0, 1, 0, 2, 0, 3, 1, 6, 3, 11, 7, 20, 15, 37, 32, 70, 68, 134, 141, 257, 288, 495, 583, 959, 1175, 1867, 2358, 3646, 4714, 7136, 9397, 13994, 18695, 27489, 37138, 54068, 73687, 106450, 146066, 209740, 289328, 413506, 572784, 815628, 1133455, 1609405 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pages 37 - 38.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,0,1,1,1,1).

FORMULA

a(n) = a(n-2) +a(n-4) +a(n-7) +a(n-8) +a(n-9) +a(n-10).

MATHEMATICA

Rest@CoefficientList[Series[x/(1-x^2-x^4-x^7-x^8-x^9-x^10), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 0, 1, 0, 0, 1, 1, 1, 1}, {1, 0, 1, 0, 2, 0, 3, 1, 6, 3}, 60] (* Harvey P. Dale, Mar 05 2016 *)

PROG

(Sage)

def A143351_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) ).list()

a=A143351_list(61); a[1:] # G. C. Greubel, Feb 08 2021

(Magma)

R<x>:=PowerSeriesRing(Rationals(), 60);

Coefficients(R!( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) )); // G. C. Greubel, Feb 08 2021

CROSSREFS

Cf. A122762, A143372, A143373, A143375.

Sequence in context: A006209 A005307 A340385 * A241644 A241640 A158449

Adjacent sequences:  A143348 A143349 A143350 * A143352 A143353 A143354

KEYWORD

nonn

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 22 2008

EXTENSIONS

More terms from Harvey P. Dale, Mar 05 2016

Edited by G. C. Greubel, Feb 08 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 8 23:30 EDT 2021. Contains 343683 sequences. (Running on oeis4.)