The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143351 Expansion of x/(1 -x^2 -x^4 -x^7 -x^8 -x^9 -x^10). 5
 1, 0, 1, 0, 2, 0, 3, 1, 6, 3, 11, 7, 20, 15, 37, 32, 70, 68, 134, 141, 257, 288, 495, 583, 959, 1175, 1867, 2358, 3646, 4714, 7136, 9397, 13994, 18695, 27489, 37138, 54068, 73687, 106450, 146066, 209740, 289328, 413506, 572784, 815628, 1133455, 1609405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 REFERENCES Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pages 37 - 38. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,0,1,1,1,1). FORMULA a(n) = a(n-2) +a(n-4) +a(n-7) +a(n-8) +a(n-9) +a(n-10). MATHEMATICA Rest@CoefficientList[Series[x/(1-x^2-x^4-x^7-x^8-x^9-x^10), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 0, 1, 0, 0, 1, 1, 1, 1}, {1, 0, 1, 0, 2, 0, 3, 1, 6, 3}, 60] (* Harvey P. Dale, Mar 05 2016 *) PROG (Sage) def A143351_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) ).list() a=A143351_list(61); a[1:] # G. C. Greubel, Feb 08 2021 (Magma) R:=PowerSeriesRing(Rationals(), 60); Coefficients(R!( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) )); // G. C. Greubel, Feb 08 2021 CROSSREFS Cf. A122762, A143372, A143373, A143375. Sequence in context: A006209 A005307 A340385 * A241644 A241640 A158449 Adjacent sequences:  A143348 A143349 A143350 * A143352 A143353 A143354 KEYWORD nonn AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 22 2008 EXTENSIONS More terms from Harvey P. Dale, Mar 05 2016 Edited by G. C. Greubel, Feb 08 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 23:30 EDT 2021. Contains 343683 sequences. (Running on oeis4.)