login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095116
a(n) = prime(n) + n - 1.
9
2, 4, 7, 10, 15, 18, 23, 26, 31, 38, 41, 48, 53, 56, 61, 68, 75, 78, 85, 90, 93, 100, 105, 112, 121, 126, 129, 134, 137, 142, 157, 162, 169, 172, 183, 186, 193, 200, 205, 212, 219, 222, 233, 236, 241, 244, 257, 270, 275, 278, 283, 290, 293, 304, 311, 318, 325
OFFSET
1,1
COMMENTS
Positions of second occurrences of n in A165634: A165634(a(n)) = n. [Reinhard Zumkeller, Sep 23 2009]
a(n) = b(n)-th highest positive integer not equal to any a(k), 1 <= k <= n-1, where b(n) = primes = A000040(n). a(1) = 2, a(n) = a(n-1) + A000040(n) - A000040(n-1) + 1 for n >= 2. a(1) = 2, a(n) = a(n-1) + A001223(n-1) + 1 for n >= 2. a(n) = A014688(n) - 1. [Jaroslav Krizek, Oct 28 2009]
Comment from N. J. A. Sloane, Mar 28 2024 (Start):
On March 23 2024, Davide Rotondo sent me an email with the following conjecture. (I've simplified it a bit.)
For a positive integer n, define a sequence b by b(0) = n; b(i) = n - pi(b(i-1)) for i >= 1, where pi(x) = number of primes <= x.
The conjecture is that after some initial terms, b becomes periodic with period length 1 or 2, and the n for which the period is 2 are 3 together with the present sequence, that is, 2, 3, 4, 7, 10, 15, 18, 23, 26, 31, 38, 41, 48, ... (End)
Proof from Robert Israel, Mar 26, 2024 (Start):
This is simply a consequence of the fact that if x < y, 0 <= pi(y) - pi(x) <= y - x and the inequality on the right is strict if y-x > 1 except for the case of 1 and 3.
Thus we start with b(0) - b(1) = pi(n). While |b(i) - b(i+1)| > 2 we get |b(i+1) - b(i+2)| = |pi(b(i+1)) - pi(b(i+2))| < |b(i) - b(i+1)|.
Eventually we must either reach |b(j+1) - b(j)| = 0 or |b(j+1) - b(j)| = 1.
If we reach 0, i.e. b(j+1) = b(j), then clearly b(k) = b(j) for all k > j.
If b(j+1) = b(j) + 1 = n - pi(b(j)), then b(j+2) = n - pi(b(j)+1) = b(j+1) or b(j+1)-1.
If b(j+1) = b(j) - 1, then b(j+2) = n - pi(b(j)-1) = b(j+1) or b(j+1)+1.
Thus from this point on we either get a 2-cycle or a 1-cycle. (End)
LINKS
FORMULA
a(n) = A014690(n-1), n > 1. [R. J. Mathar, Sep 05 2008]
MAPLE
with (numtheory):seq(n+ithprime(n+1), n=0..56); # Zerinvary Lajos, Aug 24 2008
MATHEMATICA
Table[n + Prime[n] - 1, {n, 100}] (* Vincenzo Librandi, Aug 15 2017 *)
PROG
(Haskell)
a095116 n = a000040 n + toInteger n - 1
-- Reinhard Zumkeller, Apr 17 2012
(Magma) [n+NthPrime(n)-1: n in [1..60]]; // Vincenzo Librandi, Aug 15 2017
CROSSREFS
Complement of A095117.
Essentially the same sequence as A014690.
Sequence in context: A171930 A276164 A306221 * A027384 A022939 A036702
KEYWORD
nonn
AUTHOR
Dean Hickerson, following a suggestion of Leroy Quet, May 28 2004
STATUS
approved