login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = prime(n) + n - 1.
9

%I #36 Mar 28 2024 23:34:38

%S 2,4,7,10,15,18,23,26,31,38,41,48,53,56,61,68,75,78,85,90,93,100,105,

%T 112,121,126,129,134,137,142,157,162,169,172,183,186,193,200,205,212,

%U 219,222,233,236,241,244,257,270,275,278,283,290,293,304,311,318,325

%N a(n) = prime(n) + n - 1.

%C Positions of second occurrences of n in A165634: A165634(a(n)) = n. [_Reinhard Zumkeller_, Sep 23 2009]

%C a(n) = b(n)-th highest positive integer not equal to any a(k), 1 <= k <= n-1, where b(n) = primes = A000040(n). a(1) = 2, a(n) = a(n-1) + A000040(n) - A000040(n-1) + 1 for n >= 2. a(1) = 2, a(n) = a(n-1) + A001223(n-1) + 1 for n >= 2. a(n) = A014688(n) - 1. [_Jaroslav Krizek_, Oct 28 2009]

%C Comment from _N. J. A. Sloane_, Mar 28 2024 (Start):

%C On March 23 2024, _Davide Rotondo_ sent me an email with the following conjecture. (I've simplified it a bit.)

%C For a positive integer n, define a sequence b by b(0) = n; b(i) = n - pi(b(i-1)) for i >= 1, where pi(x) = number of primes <= x.

%C The conjecture is that after some initial terms, b becomes periodic with period length 1 or 2, and the n for which the period is 2 are 3 together with the present sequence, that is, 2, 3, 4, 7, 10, 15, 18, 23, 26, 31, 38, 41, 48, ... (End)

%C Proof from _Robert Israel_, Mar 26, 2024 (Start):

%C This is simply a consequence of the fact that if x < y, 0 <= pi(y) - pi(x) <= y - x and the inequality on the right is strict if y-x > 1 except for the case of 1 and 3.

%C Thus we start with b(0) - b(1) = pi(n). While |b(i) - b(i+1)| > 2 we get |b(i+1) - b(i+2)| = |pi(b(i+1)) - pi(b(i+2))| < |b(i) - b(i+1)|.

%C Eventually we must either reach |b(j+1) - b(j)| = 0 or |b(j+1) - b(j)| = 1.

%C If we reach 0, i.e. b(j+1) = b(j), then clearly b(k) = b(j) for all k > j.

%C If b(j+1) = b(j) + 1 = n - pi(b(j)), then b(j+2) = n - pi(b(j)+1) = b(j+1) or b(j+1)-1.

%C If b(j+1) = b(j) - 1, then b(j+2) = n - pi(b(j)-1) = b(j+1) or b(j+1)+1.

%C Thus from this point on we either get a 2-cycle or a 1-cycle. (End)

%H Reinhard Zumkeller, <a href="/A095116/b095116.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A014690(n-1), n > 1. [_R. J. Mathar_, Sep 05 2008]

%p with (numtheory):seq(n+ithprime(n+1),n=0..56); # _Zerinvary Lajos_, Aug 24 2008

%t Table[n + Prime[n] - 1, {n, 100}] (* _Vincenzo Librandi_, Aug 15 2017 *)

%o (Haskell)

%o a095116 n = a000040 n + toInteger n - 1

%o -- _Reinhard Zumkeller_, Apr 17 2012

%o (Magma) [n+NthPrime(n)-1: n in [1..60]]; // _Vincenzo Librandi_, Aug 15 2017

%Y Complement of A095117.

%Y Essentially the same sequence as A014690.

%K nonn

%O 1,1

%A _Dean Hickerson_, following a suggestion of _Leroy Quet_, May 28 2004