login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142987
a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).
5
1, 10, 106, 1180, 13920, 174600, 2330640, 33084000, 498646080, 7964020800, 134491276800, 2396163513600, 44942274316800, 885524502643200, 18293122632960000, 395457106963968000, 8930300425804800000
OFFSET
1,2
COMMENTS
This is the case m = 5 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
LINKS
FORMULA
a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (2*n^5 + 10*n^3 + 3*n)/15 = A069038(n).
Recurrence: a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 10 and b(2) = 102.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(10 + 1*2/(10 + 2*3/(10 + 3*4/(10 + .. +n*(n - 1)/(10))))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(10 + 1*2/(10 + 2*3/(10 + 3*4/(10 + ... + n*(n - 1)/(10 + ...))))) = 10*log(2) - 41/6, where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).
MAPLE
p := n -> (2*n^5+10*n^3+3*n)/15: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==10, a[n+2]==10a[n+1]+(n+1)(n+2)a[n]}, a, {n, 20}] (* Harvey P. Dale, Mar 23 2021 *)
PROG
(Haskell)
a142987 n = a142987_list !! (n-1)
a142987_list = 1 : 10 : zipWith (+)
(map (* 10) $ tail a142987_list)
(zipWith (*) (drop 2 a002378_list) a142987_list)
-- Reinhard Zumkeller, Jul 17 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved