login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142986 a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n+1)*(n+2)*a(n). 5
1, 8, 70, 656, 6648, 72864, 862128, 10977408, 149892480, 2187106560, 33985025280, 560578268160, 9786290088960, 180315565516800, 3497645442816000, 71256899266560000, 1521414754578432000, 33975929212194816000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the case m = 4 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n+1)*(n+2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

REFERENCES

Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..250

FORMULA

a(n) = n!*p(n+1)*sum {k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (n^4+2*n^2)/3 = A014820(n). Recurrence: a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1)+(n+1)*(n+2)*a(n). The sequence b(n):= n!*p(n+1) satisfies the same recurrence with b(1) = 8, b(2) = 66. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(8 +1*2/(8 +2*3/(8 +3*4/(8 +...+(n-1)*n/8)))), for n >=2. The behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = sum {k = 1..inf} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(8 +1*2/(8 +2*3/(8 +3*4/(8 +...+n*(n+1)/(8 +...))))) = 17/3 - 8*log(2), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).

MAPLE

p := n -> (n^4+2*n^2)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);

MATHEMATICA

RecurrenceTable[{a[1]==1, a[2]==8, a[n]==8a[n-1]+n(n-1)a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Apr 08 2015 *)

PROG

(Haskell)

a142986 n = a142986_list !! (n-1)

a142986_list = 1 : 8 : zipWith (+)

(map (* 8) $ tail a142986_list)

(zipWith (*) (drop 2 a002378_list) a142986_list)

-- Reinhard Zumkeller, Jul 17 2015

CROSSREFS

Cf. A014820, A142983, A142984, A142985, A142987.

Cf. A002378.

Sequence in context: A299175 A299938 A152263 * A123511 A322416 A287482

Adjacent sequences: A142983 A142984 A142985 * A142987 A142988 A142989

KEYWORD

easy,nonn

AUTHOR

Peter Bala, Jul 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:40 EST 2022. Contains 358594 sequences. (Running on oeis4.)