The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142986 a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n+1)*(n+2)*a(n). 5
 1, 8, 70, 656, 6648, 72864, 862128, 10977408, 149892480, 2187106560, 33985025280, 560578268160, 9786290088960, 180315565516800, 3497645442816000, 71256899266560000, 1521414754578432000, 33975929212194816000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is the case m = 4 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n+1)*(n+2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case. REFERENCES Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..250 FORMULA a(n) = n!*p(n+1)*sum {k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (n^4+2*n^2)/3 = A014820(n). Recurrence: a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1)+(n+1)*(n+2)*a(n). The sequence b(n):= n!*p(n+1) satisfies the same recurrence with b(1) = 8, b(2) = 66. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(8 +1*2/(8 +2*3/(8 +3*4/(8 +...+(n-1)*n/8)))), for n >=2. The behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = sum {k = 1..inf} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(8 +1*2/(8 +2*3/(8 +3*4/(8 +...+n*(n+1)/(8 +...))))) = 17/3 - 8*log(2), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]). MAPLE p := n -> (n^4+2*n^2)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20); MATHEMATICA RecurrenceTable[{a[1]==1, a[2]==8, a[n]==8a[n-1]+n(n-1)a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Apr 08 2015 *) PROG (Haskell) a142986 n = a142986_list !! (n-1) a142986_list = 1 : 8 : zipWith (+) (map (* 8) \$ tail a142986_list) (zipWith (*) (drop 2 a002378_list) a142986_list) -- Reinhard Zumkeller, Jul 17 2015 CROSSREFS Cf. A014820, A142983, A142984, A142985, A142987. Cf. A002378. Sequence in context: A299175 A299938 A152263 * A123511 A322416 A287482 Adjacent sequences: A142983 A142984 A142985 * A142987 A142988 A142989 KEYWORD easy,nonn AUTHOR Peter Bala, Jul 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 21:40 EST 2022. Contains 358594 sequences. (Running on oeis4.)