login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142989 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n). 4
1, 5, 33, 240, 1992, 18360, 187416, 2093760, 25462080, 334592640, 4728412800, 71488811520, 1151817408000, 19699405286400, 356504125824000, 6805868977152000, 136702533123072000, 2881808345235456000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the case m = 1 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142990 (m=2) and A142991 (m=3).

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..447

FORMULA

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (2*n-1)/3. Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 5, b(2) = 28. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/5)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/(5+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 17/2-12*log(2).

MAPLE

p := n -> (2*n-1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);

MATHEMATICA

RecurrenceTable[{a[1]==1, a[2]==5, a[n]==5a[n-1]+(n-1)(n+1)a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Jun 17 2013 *)

CROSSREFS

Cf. A142979, A142983, A142988, A142990, A142991.

Sequence in context: A118803 A284734 A093427 * A084131 A084771 A153398

Adjacent sequences:  A142986 A142987 A142988 * A142990 A142991 A142992

KEYWORD

easy,nonn

AUTHOR

Peter Bala, Jul 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 13:46 EDT 2021. Contains 343823 sequences. (Running on oeis4.)