login
A142723
Decimal expansion of the continued fraction whose terms are half the gaps of the odd nonprimes A014076.
2
4, 3, 0, 3, 2, 3, 9, 3, 0, 1, 9, 8, 3, 1, 2, 2, 5, 4, 7, 5, 0, 7, 2, 5, 6, 5, 3, 7, 1, 2, 9, 4, 6, 1, 0, 1, 1, 0, 0, 5, 8, 7, 4, 9, 8, 2, 5, 6, 1, 5, 9, 3, 3, 2, 7, 6, 9, 9, 6, 6, 3, 7, 1, 8, 1, 0, 8, 6, 7, 0, 5, 5, 2, 1, 6, 2, 6, 3, 9, 5, 7, 8, 9, 0, 1, 9, 6, 0, 0, 2, 4, 3, 7, 4, 8, 7, 1, 5, 5, 8, 7, 3, 6, 9, 2
OFFSET
1,1
COMMENTS
Take half of the first difference of odd nonprimes A014076 and treat it as a continued fraction. This sequence gives the decimal expansion of that number. - Charles R Greathouse IV, Feb 03 2011
LINKS
EXAMPLE
4.30323930198312254750725653712946101100587498256159332769966371810867...
MATHEMATICA
a = Flatten[Table[If[PrimeQ[2*n + 1], {}, 2*n - 1], {n, 0, 200}]]; b = Table[(a[[n + 1]] - a[[n]])/2, {n, 1, Length[a] - 1}]; FromContinuedFraction[b]; c = N[%, 200]; Table[Floor[Mod[c*10^n, 10]], {n, 0, 201}] (* Bagula and Adamson *)
RealDigits[FromContinuedFraction[Differences[Select[Range[-1, 399, 2], !PrimeQ[# + 2]&]]/2], 10, 201][[1]] (* Charles R Greathouse IV, Feb 03 2011 *)
PROG
(PARI) a=contfracpnqn(D(select(vector(99, n, 2*n-1), x->!isprime(x)))/2); a[1, 1]/a[2, 1]*1. /* OK for 35 digits. For D(.) see A137822 */ \\ M. F. Hasler, Sep 29 2011
CROSSREFS
Sequence in context: A296002 A227423 A199443 * A296228 A267410 A016697
KEYWORD
nonn,cons
AUTHOR
STATUS
approved