login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141781
Composite terms of A120292: a(n) = A120292(A141779(n)).
3
3599, 118477, 210589, 971573, 1164103, 1901959, 2446681, 3230069, 2603767, 9114493, 9772927, 1497767, 6558967, 4323827, 32405449, 33992009, 11453957, 34417541, 35938783, 36569077, 40473001, 42110911, 47901839, 55183769
OFFSET
1,1
COMMENTS
Corresponding indices are listed in A141779(n) = {58, 282, 367, 743, 808, 1015, 1141, 1299, 1962, 2109, 2179, 2397, 2501, ...}.
Note that all listed terms are semiprime, for example: a(1) = 3599 = 59*61, a(2) = 118477 = 257*461, a(3) = 210589 = 251*839, a(4) = 971573 = 643*1511.
Conjecture: All terms are semiprime.
FORMULA
a(n) = A120292(A141779(n)).
MATHEMATICA
Do[f=Numerator[Abs[(1 - Sum[Prime[k] + 1, {k, 1, n}])/Product[Prime[k] + 1, {k, 1, n}] ]]; If[ !PrimeQ[f]&&!(f==1), Print[{n, f, FactorInteger[f]}]], {n, 1, 8212}]
PROG
(PARI) for(n=1, 100, t=abs(numerator(matdet(matrix(n, n, i, j, if(i==j, prime(i)/(1+prime(i)), 1))))); if(t>3 && !isprime(t), print1(t", "))) \\ Charles R Greathouse IV, Feb 07 2013
CROSSREFS
Cf. A120292 = Absolute value of numerator of determinant of n X n matrix with elements M[i, j] = Prime[i]/(1+Prime[i]) if i=j and 1 otherwise. Cf. A125716 = Numbers n such that A120292(n) = 1. Cf. A141780 = Numbers n such that A120292(n) is prime. Cf. A141779 = Numbers n such that A120292(n)>1 and is not prime.
Sequence in context: A188100 A230023 A157857 * A348627 A216682 A348521
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 04 2008
STATUS
approved