login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157857
a(n) = 3600*n^2 - n.
3
3599, 14398, 32397, 57596, 89995, 129594, 176393, 230392, 291591, 359990, 435589, 518388, 608387, 705586, 809985, 921584, 1040383, 1166382, 1299581, 1439980, 1587579, 1742378, 1904377, 2073576, 2249975, 2433574, 2624373, 2822372
OFFSET
1,1
COMMENTS
The identity (103680000*n^2 - 28800*n + 1)^2 - (3600*n^2 - n)*(1728000*n - 240)^2 = 1 can be written as A157859(n)^2 - a(n)*A157858(n)^2 = 1 (see second comment at A157858). - Vincenzo Librandi, Jan 25 2012
FORMULA
G.f.: x*(3599 + 3601*x)/(1-x)^3. - Colin Barker, Jan 17 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 25 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {3599, 14398, 32397}, 40] (* Vincenzo Librandi, Jan 25 2012 *)
Table[3600n^2-n, {n, 30}] (* Harvey P. Dale, Apr 13 2019 *)
PROG
(Magma) I:=[3599, 14398, 32397]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 25 2012
(PARI) for(n=1, 30, print1(3600*n^2 - n", ")); \\ Vincenzo Librandi, Jan 25 2012
CROSSREFS
Sequence in context: A186214 A188100 A230023 * A141781 A348627 A216682
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 08 2009
STATUS
approved