login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157858
a(n) = 1728000*n - 240.
3
1727760, 3455760, 5183760, 6911760, 8639760, 10367760, 12095760, 13823760, 15551760, 17279760, 19007760, 20735760, 22463760, 24191760, 25919760, 27647760, 29375760, 31103760, 32831760, 34559760, 36287760, 38015760
OFFSET
1,1
COMMENTS
The identity (103680000*n^2 - 28800*n + 1)^2 - (3600*n^2 - n)*(1728000*n - 240)^2 = 1 can be written as A157859(n)^2 - A157857(n)*a(n)^2 = 1. - Vincenzo Librandi, Jan 25 2012
This is the case s=60 of the identity (8*n^2*s^4 - 8*n*s^2 + 1)^2 - (n^2*s^2 - n)*(8*n*s^3 - 4*s)^2 = 1. - Bruno Berselli, Jan 25 2012
FORMULA
G.f.: x*(1727760 + 240*x)/(1-x)^2. - Colin Barker, Jan 17 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 25 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {1727760, 3455760}, 40] (* Vincenzo Librandi, Jan 25 2012 *)
PROG
(Magma) I:=[1727760, 3455760]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 25 2012
(PARI) for(n=1, 22, print1(1728000*n - 240", ")); \\ Vincenzo Librandi, Jan 25 2012
CROSSREFS
Sequence in context: A233633 A151639 A083646 * A157862 A186586 A131639
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 08 2009
STATUS
approved